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Abstract

Winsberg’s “handshaking” account of inter-model relations is a well-known theory of multiscale
modeling in physical systems. Winsberg argues that relations among the component models in a
multiscale modeling system are not related mereologically, but rather by empirically determined
algorithms. I argue that while the handshaking account does demonstrate the existence of non-
mereological relationships among component models, Winsberg does not attend to the different ways
in which handshaking algorithms are developed. By overlooking the distinct strategies employed
in different handshake models, Winsberg’s account fails to capture the central feature of effective
multiscale modeling practices, namely, how the dominant behaviors of the modeled systems vary
across the different scales, and how this variation constrains the ways modelers can combine com-
ponent models. Using Winsberg’s example of nanoscale crack propagation, I distinguish two modes
of handshaking and show how the different modes arise from the scale-dependent physics involved
in each component model.

Manuscript

The basic assumption of the multiscale modeling literature is that modeling practices in science often

rely on being able to describe the behavior of target systems across a variety of length, time, and

energy scales. Consequently, philosophy of science should accommodate its theories of modeling,

inter-theory and inter-model relations, confirmation, and explanation to multiscale modeling.

Winsberg’s “handshaking” account of relations among models in certain simulation systems

is a well-known theory of multiscale modeling in physical systems. The account, introduced in

[Winsberg, 2006] and developed in [Winsberg, 2010], is built around a central example of multiscale

computer simulation of crack propagation in nanoscale systems. From the example, Winsberg

concludes that the three component models in the simulation stand in non-reductive, non-emergent

relations with one another. He names this relationship the “handshake” relation, and he uses

handshaking to advance a non-mereological conception of inter-model relations. Instead, he argues,
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“the various scales are . . . sewn together using specially constructed algorithms to mediate between

otherwise incompatible frameworks.”[Winsberg, 2010, p. 73] This sewing-together occurs via the

development of hybrid models.

In this paper, I argue that while the handshaking account accomplishes its non-mereological

goal, Winsberg’s conception of hybrid models does not supplant the mereological conception with a

sufficiently robust alternative. Specifically, it does not attend to the different ways in which scales

may be “sewn together.” By overlooking the distinct strategies employed in different hybrid models,

Winsberg’s account fails to capture the central feature of effective multiscale modeling practices,

namely, how the dominant behaviors of the modeled systems vary across the different scales, and

how this variation constrains the ways modelers can combine component models. Using Winsberg’s

example of nanoscale crack propagation, I distinguish two modes of handshaking and show how the

different strategies arise from the scale-dependent physics involved in each component model.

Winsberg’s mature handshaking account[Winsberg, 2010, pp. 72–92] is part of his larger aim

to develop an epistemology of computer simulation, and so he is interested in inter-model relations

more as a means than an end. But along the way he encounters the problem of how to make

sense of simulations whose component models come from a variety of theoretical backgrounds.

The nanoscale simulations he discusses use three distinct computational models to describe three

distinct sorts of dynamics that a nanoscale system experiences, each at characteristic length scales.

Continuum mechanics describes large-scale behaviors of the system, molecular dynamics describes

somewhat smaller domains that behave like classical rigid bodies, and quantum mechanics describes

the smallest interactions among individual atoms. In the multiscale simulation Winsberg describes,

the models are combined “in parallel” such that at each time-step of the simulation, each of the

models contributes some mathematical quantity to the overall description of the system. The

models are combined by developing computational techniques to average over boundary regions

where a higher-scale model and a lower-scale model disagree on a predicted quantity. This method of

combining models is the phenomenon that Winsberg, following the physicists Broughton, Abraham,

Bernstein, and Kaxiras [Abraham et al., 1998, Broughton et al., 1999], calls “handshaking,” and

the resultant multiscale models are called “hybrids.”[Winsberg, 2010, p. 74]
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Winsberg argues that handshaking illustrates a non-mereological relationship between smaller-

scale and larger-scale models:

One issue that has received perennial attention from philosophers of science is that of

the relationship between different levels of description. Traditionally, the focus of this

inquiry has been debate about whether or not, and to what extent or in what respect,

laws or theories at higher levels of description are reducible to those at a lower level.

Underlying all of this debate, I believe, has been a common intuition: the basis for

understanding interlevel interaction—to the extent that it is possible—is just applied

mereology. In other words, to the extent that the literature in philosophy of science

about levels of description has focused on whether and how one level is reducible to

another it has implicitly assumed that the only interesting possible relationships are

logical ones—that is, inter-theoretic relationships that flow logically from the mere-

ological relationships between the entities posited in the two levels. But if methods

that are anything like those described above become accepted as successful in nanoscale

modeling, that intuition is likely to come under pressure. The reason is that parallel

multiscale modeling methods are forced to develop relationships between the different

levels that are perhaps suggested, but certainly not logically determined, by their mere-

ology. Rather, developing the appropriate relationships, in Abraham’s words, “requires

physical insight.” What this suggests is that there can be a substantial physics of in-

terlevel interaction—a physics that is guided but not determined by either the theories

at each level or the mereology of their respective entities. Indeed, whether or not the

relationships employed by Abraham and his group will turn out to be the correct ones

is an empirical/physical question and not a logical/mereological one.

[Winsberg, 2010, p. 84–85]

Winsberg’s account primarily concerns representational relationships of the sort typical to the

modeling literature more than it does inter-theory relations, and so he does not prod the details

of the simulation further than is needed to show that in simulations like this one, inter-level in-
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teractions are empirically determined and non-mereological. This is a mistake, as it overlooks the

question of why the simulation manages to model propagating-crack systems successfully. Part

of Winsberg’s epistemology-of-simulation project is to rationalize the use of simulation models to

make scientific progress in just these sorts of cases, so the oversight is surprising. In the case of

these crack-propagation simulations, details of the simulations—specifically, the assumptions built

into the handshaking techniques—answer the related questions of (1) why these models are not

mereologically combinable and (2) what licenses the non-mereological strategies that do allow them

to be combined. Winsberg keys in on the first question, but does not acknowledge the second.

In the example from Broughton et al [Broughton et al., 1999] that Winsberg considers, there

are three length scales of interest and, therefore, two handshaking algorithms. The macroscopic

length scale describes regions of a solid-state system whose dynamics are close to equilibrium,

and it is modeled by finite-element (FE) methods, which are derived from the elastic theory of

solids. The model divides a continuous volume of the system into cells and describes the kinetic

energy (displacement) and potential energy (strain) on individual cells (hence, finite elements).

These cells are joined together into a mesh, and cell borders are called mesh points. One of the

authors’ innovations is their particular method for determining overall displacement and strain as a

function of values of those quantities at the mesh points. So their model discretizes the continuum

description.

The mesoscopic length scale describes regions of the system that are slightly perturbed from

equilibrium but which are nonetheless not dynamically central to the simulation—these are not the

areas where bonds are breaking and forming, but instead the trailing wake of dynamical disturbance

left by a propagating crack. These regions are modeled by molecular dynamics (MD). Molecular

dynamics is what it sounds like, that is, a model of the movement of individual atoms or molecules.

It is a classical (non-quantum) model. Since the model is of a solid, it is populated as a lattice of

atoms whose movement (vibration, rotation, and the breaking and forming of bonds) is described

by interatomic electronic potentials. Think of a network of balls connected by springs.

To develop a handshaking algorithm for these two models, Broughton1 begins by drawing an
1For narrative ease, I refer to the first author of [Broughton et al., 1999] in this explication.
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imaginary surface between a region described by the FE model and one described by the MD model.

The interatomic potentials governing the movement of atoms in the MD model range across that

surface into the region described by the FE model. Since the FE mesh describes continuously

distributed matter, the mesh points can be lined up anywhere along the surface—including right

along the lattice of MD interatomic potentials. As Broughton puts it, what the algorithm needs

is a “one-to-one mapping of a mesh point to an atom site.” [Broughton et al., 1999, p. 2396]

Farther away from the handshake interface, the mesh can be spaced out for computational efficiency,

allowing individual cells to cover greater spatial regions. The energy at a point in the interfacial

(handshake) region is calculated by taking the arithmetic mean of predictions from each model.

The effectiveness of the energy-averaging strategy the physicists end up with is contingent both

on features about the world and on features about the computational models. Averaging the energy

is effective exactly because the MD lattice has been lined up with the FE mesh at the contact region;

otherwise there would not be commensurable values along the imaginary surface at the interface.

That alignment is possible because the FE mesh describes a region of the system where continuum

mechanics is the appropriate description of physical behavior. The continuous deformability of

the mesh is what allows modelers to line mesh points up with the MD lattice. In other words,

the macroscopic scale, and associated near-equilibrium, of the FE-modeled region of the system, is

what licenses the use of continuum (FE) methods to describe it.

The physics of the system constrains the application of different models to different portions of

the system. The physical and computational details of the models in turn constrain the handshaking

strategies available; if the FE mesh were not continuously deformable, Broughton would have had

to devise an alternative sort of algorithm to average the energy in the interfacial region, and

the resulting handshaking strategy would differ both computationally and in the representational

relationships between the component models and their target physical behaviors. In fact, this is

exactly what happens in this example’s other handshake region.

One of the distinctions with which Broughton begins the discussion of the MD/TB handshake

algorithm is that the MD and TB models both proceed under assumptions of atomicity, whereas in

the FE/MD region the FE model’s mesh points are not meant to represent spatial points—indeed
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just the opposite, mesh points are meant as abstractions away from spatial details of material

behavior. Without continuous deformability in one model, the problem of connecting the spatial

regions of the system that are being represented by the different models cannot be solved as it was

in the MD/FE case.

Both MD and TB can model atoms in a lattice and their electronic interactions. This is the area

of representational overlap between the models on which Broughton bases the MD/TB handshake.

The MD/TB handshake is constructed from the electronic interactions of a carefully-defined set

of fictional “atoms.” The material modeled in this example is made of silicon, and the fictional

“atoms,” called “silogens,” are assigned some silicon-like properties and some hydrogen-like prop-

erties. The latter properties are introduced for the sake of localizing electronic behavior so it can

be modeled by MD, and they are properties that silicon atoms could not have—hence, the silogens’

status as fictional entities. The handshake is effective because of how the modelers assign properties

to the silogens. Some properties, such as the spacing in a crystal lattice, are defined by the the

MD model. Other properties, such as reduced electronic symmetries, come from TB. The result is

a messy, chimeric dynamical entity in the interfacial region, but it is one that both MD and TB

can analyze, and thus it is one from which a picture of the energetic behavior at the interface can

be developed.

The MD/TB handshake assigns contrived, un-physical electronic behaviors to silogens, and to

their near neighbors, in order to generate predictions about the local energetic behavior of the

interfacial region. By reducing electronic symmetries, the models allow a localized description

of the energetic behavior of the handshake region, whereas in the non-handshake region of the

quantum-mechanical TB model, energetic interactions are delocalized.

Both this handshake and the FE/MD one are certainly examples of non-mereological relation-

ships among the component models. In both the models are constrained by the physics: here, the

genuinely quantum behavior of the TB region cannot be classically predicted. And in both, some

features of the interface are manipulated to form the handshake. However, the ways in which the

two handshakes are constructed differ in what sort of feature of the models is selected as the object

of manipulation. In the FE/MD case, the FE mesh is deformed to line up with the MD lattice: this
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is a mere computational device, and it doesn’t introduce any explicitly unphysical assumptions. In

the MD/TB handshake, however, an unphysical entity (the silogen) is introduced to both models,

and computations are performed as usual on the unusual entity.

Broughton puts the point thus:

In contradistinction to the FE/MD handshake algorithm, where a plane between rows

of atoms was defined, the MD/TB handshaking takes place conceptually across a plane

consisting of atoms. This different approach is necessitated because it is difficult to

apportion (localize) energy in a computationally efficient way to specific bonds in an

electronic structure calculation. The total energy is a property of the entire system.

Attempts to define a 50/50 Hamiltonian, such as was used for the FE/MD interface,

run into issues . . .

[Broughton et al., 1999, p. 2398]

The basic idea is this: one can treat computations of the modeled system’s energy as conceptually

the same between the MD and FE regions, although the entities that produce changes in that energy

differ. However, the conceptions of energy required to make sense of the MD and TB models are

really quite different from one another, but the entities are, while not identical, both discretized

and inter-relatable. So to combine the MD and TB models, different strategies are needed than

those used to combine FE and TB—and those strategies require different conceptual resources.

As Winsberg pointed out, in neither of the handshakes is one model conceived of as containing

“truer,” “more correct,” or “better” physics. There is something non-mereological going on here.

What Winsberg did not point out is that in both handshakes, each component model is conceptu-

ally and computationally compromised in a systematic and physically-constrained way in order to

combine the models. The handshakes are similar in that physical details of the modeled behaviors

at each characteristic length scale in the system constrain the ways in which interfacial algorithms

can be developed. But the conceptual underpinnings of the handshakes differ greatly from case to

case.

Winsberg is right to identify that the relationships between these three component models
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are better understood as multiscale, rather than reductive or emergent. There is no fundamental

model that either represents most accurately or explains most lucidly the behavior of the target

simulated system. However, by lumping the relations between Broughton’s models into one category

of theoretical activity, Winsberg overlooks the intricate system of physical, computational, and

pragmatic constraints upon the individual handshake algorithms. By attending to precisely these

differences, one can glean that the handshakes contain different strategies for combining models

across scales. These strategies in turn generate different representational content, as well as different

ways of rationalizing both the permissibility and effectiveness of modeling the crack propagation

behavior in this multiscale model. The present example has produced two sorts of handshaking

strategies; further analysis of additional examples will surely produce others.

The reason there exist different handshaking strategies is that physical systems are scale-

dependent, that is, the dominant behaviors—and therefore the dominant theoretical and modeling

infrastructure—of physical systems is indexed to the characteristic length, time, and energy scales

of the system. Multiscale modeling itself is an outgrowth of the multiscale nature of the physical

world. This point has been made before (e.g. in [Batterman, 2012, Wilson, 2012], and Morrison

[Morrison, 2015] has lately shown that in addition to multiscale behavior, systems must demon-

strate scale separation in order to get multiscale modeling strategies such as Broughton’s off the

ground.

One final point worth noting is that in developing both the FE/MD and the MD/TB algorithms,

Broughton needed to attend to the boundary-region behavior of the component models. Indeed,

these boundary regions are, more or less by definition, where the handshakes occurred. The chal-

lenge of developing a multiscale model lay in accounting for the behavior at the boundary between

regions of the system modeled by a higher-scale model and regions modeled by a lower-scale model.

In this way, Winsberg’s ‘lumpy’ handshaking account did pick out a useful feature of multiscale

models: while there are many differences in the specific physical, computational, and pragmatic

constraints associated with combining models across scales, these constraints all inter-mingle in an

attempt to solve the same sort of problem, namely how to account for behavior in the boundary

regions of modeled systems.
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